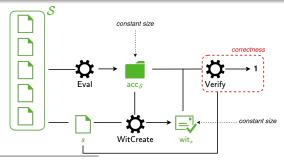
Exploring the Interplay of Cryptographic Accumulators and Zero-Knowledge Proofs

Anaïs Barthoulot

University of Montpellier, LIRMM

Foundations and Applications of Zero-Knowledge Proofs
4th September 2024



(Asymmetric) Cryptographic Accumulators

Definition (simplified) 1 2

- Setup(λ) \rightarrow pk, sk
- ullet Eval(pk, (sk,) \mathcal{S}) ightarrow acc $_{\mathcal{S}}$
- $\bullet \ \mathsf{WitCreate}(\mathsf{pk},\, (\mathsf{sk},) \ \mathsf{acc}_{\mathcal{S}}, \mathcal{S}, s) \to \mathsf{wit}_s$
- Verify(pk, acc_S , s, wit_s) $\rightarrow 0/1$

One-way accumulators: A decentralized alternative to digital signatures, Benaloh and de Mare, EUROCRYPT 1993

 $^{^2}$ Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives, Derler, Hanser, and Slamanig CT-RSA 2015

In Brief

Lots of properties such as

In Brief

• Lots of properties such as zero-knowledge

In Brief

 Lots of properties such as zero-knowledge ≠ zero-knowledge proofs of knowledge

In Brief

 Lots of properties such as zero-knowledge ≠ zero-knowledge proofs of knowledge

Zero-knowledge accumulator

 Accumulated value and witnesses leak nothing about the underlying set, not even the size of the set

In Brief

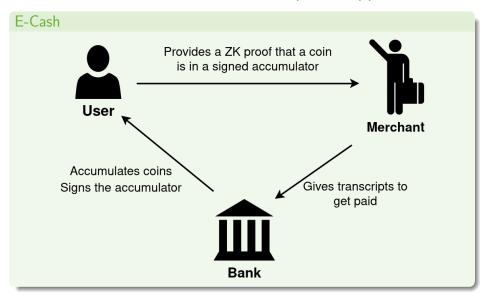
 Lots of properties such as zero-knowledge ≠ zero-knowledge proofs of knowledge

Zero-knowledge accumulator

- Accumulated value and witnesses leak nothing about the underlying set, not even the size of the set
- → Not considered in this talk

In Brief

 Lots of properties such as zero-knowledge ≠ zero-knowledge proofs of knowledge


Zero-knowledge accumulator

- Accumulated value and witnesses leak nothing about the underlying set, not even the size of the set
- → Not considered in this talk

Accumulator with zero-knowledge proofs of knowledge

• Prove membership of an element, while keeping the element hidden

Accumulators and ZK Proofs: Example of Application

Other applications: anonymous credentials, ...

Interplay of Accumulators and ZK Proofs

 Efficiently Provable: combined with a commitment scheme example: RSA-based accumulators and Pedersen commitments³

³Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials, Camenisch and Lysyanskaya, Crypto 2002

Interplay of Accumulators and ZK Proofs

- Efficiently Provable: combined with a commitment scheme example: RSA-based accumulators and Pedersen commitments³
- SNARK-friendly: verification done with (zk) SNARKs example: Merkle trees, RSA-based accumulators ⁴

 $^{^3}$ Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials, Camenisch and Lysyanskaya, Crypto 2002

 $^{^4}$ Scaling Verifiable Computation Using Efficient Set Accumulators, Ozdemir, Wahby, Whitehat, Boneh, SEC 2020

Interplay of Accumulators and ZK Proofs

- Efficiently Provable: combined with a commitment scheme example: RSA-based accumulators and Pedersen commitments³
- SNARK-friendly: verification done with (zk) SNARKs example: Merkle trees, RSA-based accumulators ⁴
- Determinantal Accumulators: designed to construct special NIZK proofs ⁵

³Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials, Camenisch and Lysyanskaya, Crypto 2002

⁴Scaling Verifiable Computation Using Efficient Set Accumulators, Ozdemir, Wahby, Whitehat, Boneh, SEC 2020

 $^{^{5}}$ Set (Non-)Membership NIZKs from Determinantal Accumulators, Lipmaa and Parisella, Latincrypt 2023

Key Takeaways

Combining ZK Proofs and Accumulators

- Enhances privacy of accumulators
- ▶ Applied in E-Cash, anonymous credentials, and blockchain technologies

Active Research Area